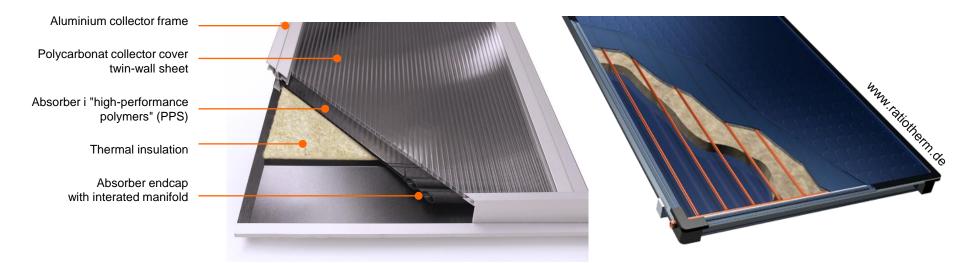
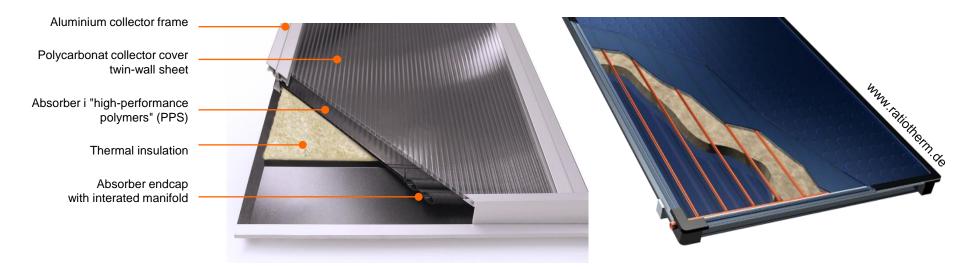
Cost Reduction Potential of Polymeric Collectors

Michaela Meir

Aventa AS


Journée R&D ADEME Sophia Antipolis, France

26 April 2018


Main differences to solar heating systems with conventional flat plate collectors

Main differences to solar heating systems with conventional flat plate collectors


Collector

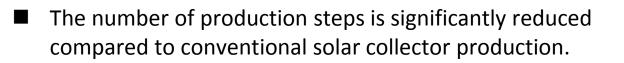
- High-temperature performance polymers
- Flexible lengths
- Light-weight building modules (8 kg/m²)
- Replacing conventional building envelopes (roofs & facades)

Main differences to solar heating systems with conventional flat plate collectors

Collector

- High-temperature performance polymers
- Flexible lengths
- Light-weight building modules (8 kg/m²)
- Replacing conventional building envelopes (roofs & facades)

System


- Water as heat carrier
- High-flow system
- Drain-back technology
- Non-pressurized collector loop (installation)

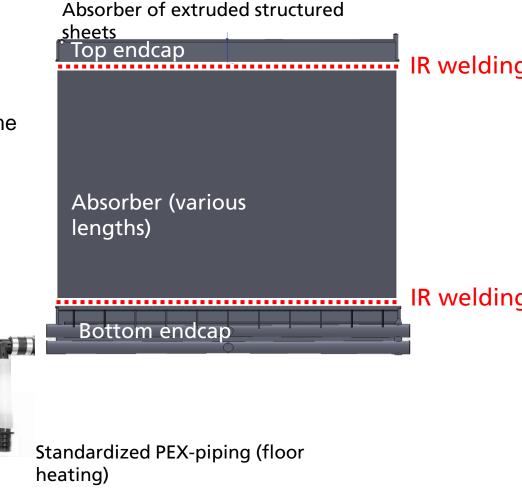
Major Production Steps

Structured sheet extrusion

Cutting

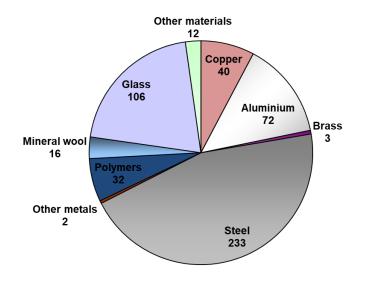
End-cap assembly and coating

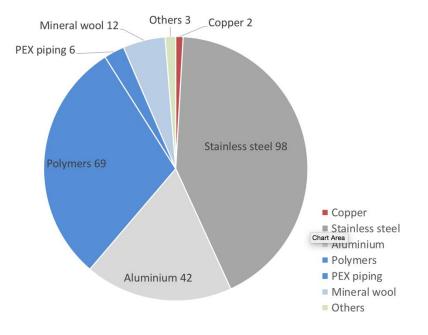
Cutting of other sub-components ransport & installation



Absorber production

- Highly-industrialised processing
- Very few production steps
- Low production costs with high volume
- Integrated design

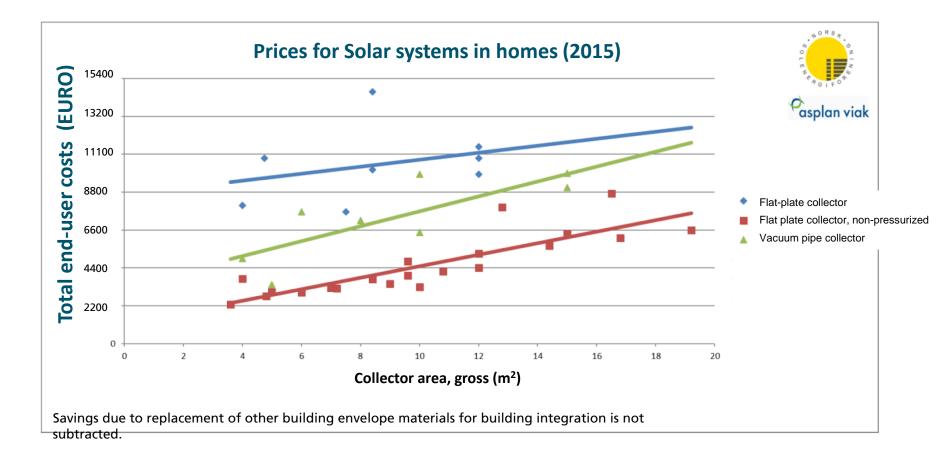



Weight of components, Solar combisystem

Average value of material (kg) "Combisystems 2008" with Conventional flat-plate collector

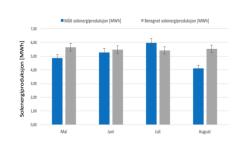
Material weight comparison (in kg) Combisystem, Housing Estate Oslo: **Polymeric AventaSolar collector**

Solar Thermal Value Chain



Prices of solar heating systems in private homes

Total end-user costs incl. solar collector system and heat store, reported by the customers, include installation, but exclude VAT and subsidies.


Cost examples: Medium-sized projects (1)

Ilseng State Prison

Costs:

Solar collector, heat store, pumps, control system, pipes, removal of tiles, installation, engineering and administration.

SUM: 433 €/m² collector area

Cost examples: Medium-sized projects (2)

Bjørkelangen Elementary School

Solar heating system for domestic hot water preparation. 105 m² facade integrated solar collectors 5.6 m³ heat buffer store

Costs

Solar collector, heat store, pipes and controller, incl. installation: **SUM:** 370 \notin /m² collector area

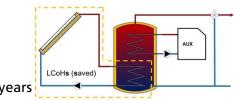
Savings due to replacement of other materials/components are not included.

Cost examples: Solar combisystem (3)

Housing Estate Oslo with 34 passive houses

34 houses with totally 480 m² roof integrated solar collectors, decentralized with 0.8 m³ heat stores, incl.100 liters DHW preheater and piping, operation control of the auxiliary heat supply and solar heating system, installation- and start-up support.

Costs


SUM: 370 €/m² collector area

Examples, Norway

Lifetime 20 years

Ilseng State Prison

Retrofit, DHW preparation 237 m² Collector area 8.4 m³ Heat store 1100 kWh/(m² a) solar irradiance*

Bjørkelangen Elementary School

New-built, DHW preparation 105 m² Collector area 5.6 m³ Heat store 889 kWh/(m² a) solar irradiance* Housing Estate Oslo, 34 passive houses

New-built, Solar combisystems with each 14 m² Collector area 0.8 m³ Heat store 1210 kWh/(m² a) solar irradiance*

* Solar irradiance on tilted collector surface.

Examples, Norway LCoHs (saved) Lifetime 20 years **Bjørkelangen Elementary Ilseng State Prison** Housing Estate Oslo, 34 passive houses School **Retrofit, DHW preparation** New-built, Solar combisystems with 237 m² Collector area New-built, DHW preparation each 8.4 m³ Heat store 105 m² Collector area 14 m² Collector area 1100 kWh/(m² a) solar irradiance* 5.6 m³ Heat store 0.8 m³ Heat store 889 kWh/(m² a) solar irradiance* 1210 kWh/(m² a) solar irradiance* LCoHs retrofit = 0.099 €/kWh I CoHs = 0.035 €/kWh I CoHs = 0.082 €/kWh LCoHs new built = 0.073 €/kWh Electricity costs = 0.115 €/kWh Comments: Comments: Comments: Retrofit: roof tiles had to be Good planning, infrastructure Passive houses: designed for high removed solar fraction * Serildidignise on itiliteted to wards east Installation partly included High solar fraction ; τ<u>λ</u>5Κ 54

NTERNATIONAL ENERGY AGENCY

Thank you for your attention!

Aventa AS

Michaela Meir

www.aventasolar.com

mm@aventa.no

