

Description:	Definition of the reference solar domestic hot water (SDHW) system for a single- family house (SFH), Austria
Date:	30.11.2016, revised 10.04.2018 ¹
Authors:	Thomas Ramschak (AEE INTEC), François Veynandt (AEE INTEC)
Download possible at:	http://task54.iea-shc.org/

Introduction

This document describes the reference solar domestic hot water (SDHW) system for domestic hot water preparation in a single-family house in Austria. The system is modelled with TSol to calculate the fuel consumption and electric energy, as well as the substituted fuel provided by the SDHW system, which are needed to provide the required domestic hot water and space heating. Using this result the levelized costs of heat (LCOH) for the substituted fuel is calculated using Equation 1, with the reference costs for the investment of the system, installation costs, fuel and electricity costs.

Hydraulic Scheme of the System

Key data	
Collector area (one collector)	2.0 m ²
Heat store volume	300
Location	Graz, Österreich
Hemispherical irradiance on horizontal surface	$\Sigma G_{hem,hor} = 1126 \text{ kWh/(m}^2 \text{ a)}$
Lifetime of system	25 years

Levelized Cost of Heat (LCoH)

LCoHs solar part without VAT	0.119 €/kWh
LCoHc conventional part without VAT	0.105 €/kWh
LCoHo complete system without VAT	0.107 €/kWh

Details of the System

Location	Austria, Graz	
Type of system	Solar domestic hot water (SDHW) system	
Weather data including	TSol	
- Hemispherical irradiance on horizontal surface	$\Sigma G_{hem,hor} = 1126 \text{ kWh/(m}^2 \text{ a})$	
- Beam irradiance on horizontal surface	$\Sigma G_{\text{beam,hor}} = 482 \text{ kWh/(m}^2 \text{ a)}$	
- Diffuse irradiance on horizontal surface	$\Sigma G_{diff,hor} = 644 \text{ kWh/m}^2 \text{ a}$	
- Ambient temperature	$T_{amb,av} = 9.2 \ ^{\circ}C$	
in hourly values		
Collector orientation		
- Collector tilt angle to horizontal	35 °	
- South deviation of collector	south = 0°	
- Ground reflectance	0.2	
- Resulting hemispherical irradiance on tilted		
surface	$\Sigma G_{hem,tilt} = 1280 \text{ kWh/(m}^2 \text{ a})$	
Load information including		
- Heat demand space heating	10.29 MWh/a [1]	
- Tapping profile	3.19 MWh/a [1]	
	hot water demand (daily profile)	
	35%	
	₩ 30%	
	s 25% - 5 20% ■ Sun.	
	0 10%	
	2 5%	
	8 0% 0%	
	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\$	
	00000000000000000000000000000000000000	
	hot water demand (weekly profile) hot water demand (yearly profile)	
	8 00% 5 80%	
	Mo Tu Vier Sau Sau Augu Augu Augu Augu Augu Augu Augu Au	
- Tanning temperature	60°C	
- Average inlet temperature of cold water		
- Cold water inlet temperature amplitude		
- Colu water miet temperature amplitude	UN	

INFO Sheet A04

Hydraulic scheme of the system	
Collector information based on gross area	T*SOL Database Standard Flat-Plate Collector
Number of collectors	3
Collector area of one collector	2.0 m ²
Maximum collector efficiency	0.8
Incidence angle modifier for direct irradiance b ₀	0.88 (at 50°)
Incidence angle modifier for diffuse irradiance K _d	0.83
Linear heat loss coefficient a ₁	3.69 W/(m ² K)
2nd order heat loss coefficient a ₂	0.007 W/(m ² K ²)
Effective heat capacity c _{eff}	6.0 kJ/(m ² K)
Heat store parameters	T*SOL Database
Heat store volume	300 L
Auxiliary volume for DHW preparation	120 L
Store inner diameter	0.6 m
Rel. Height of solar inlet	0.4
Rel. Height of solar outlet	0.02
Rel. Height of auxiliary inlet	0.95
Rel. Height of auxiliary outlet	0.6
Rel. Height of sensor for collector loop	0.19
Rel. Height of sensor for auxiliary heating	0.75
Set temperature for DHW	60.0 °C +- 3 K
Overall heat loss capacity rate of store	2.5 W/K
Effective vertical conductivity	1.2 W/(mK)
Heat transfer capacity rate of solar loop HX	(kA) _{WT,Sol} = 300 W/K
Heat transfer capacity rate of auxiliary loop HX	(kA) _{WT,Aux} = 300 W/K
Volume solar loop HX (Heat eXchanger)	10 L
Volume auxiliary loop HX	6 L
Maximum heat store temperature	90 °C
Ambient temperature of heat store	15 °C
Solar thermal controller and hydraulic piping	
Total pipe length of collector loop	9.6 m

INFO Sheet A04

Inner diameter of collector loop pipe	15 mm
Mass flow collector loop	40 kg/(m ² h), constant
Temperature difference collector start-up	8 K
Temperature difference collector shut-off	3 К
Electric power of solar thermal controller	3 W
Operating hours of solar thermal controller per year	8760 h
Electric consumption of controller per year	26.3 kWh
Electric power of solar loop pump	7 W
Operating hours of solar loop pump	2532 h
Electric consumption of solar loop pump per year	17.7 kWh
Conventional back up system	
Type of auxiliary heating	Oil boiler
Boiler capacity	12 kW
Mass flow	-
Efficiency factor of boiler	0.85
Electric power of controller	3 W
Operating hours of controller per year	8760
Electric consumption of controller per year	26.3 kWh
Electric power of pump	7 W
Operating hours of pump (aux. Heating + space	4165 h
heating)	
Electric consumption of pump per year	29.2 kWh
Investment costs conventional part	
Overall investment costs	7560 € [2]
Investment costs solar thermal system	
Solar thermal collector, heat store, solar thermal	4120€ [3]
controller solar thermal hydraulic components	
Installation	1620€ [3]
Credit conventional heat store and share of	-715€[3]
installation	
Overall investment costs solar thermal part I_0	5025€
Operation costs conventional part per year	
Heat demand hot water	1446 kWh/a
Fuel demand hot water	1701 kWh/a
Heat demand space heating	10290 kWh/a
Fuel demand space heating	12106 kWh/a
Fuel demand hot water + space heating E _t	13807 kWh/a
Cost per kwh fuel (oil)	0.066 €/kWh [2]
Fuel costs	911 €/a
Electricity demand	55.4 kWh/a
Cost per kwh electric energy	0.17 € [4]
Electricity costs	9.4 €/a
Maintenance costs	220 €/a [2]
Yearly operation and maintenance cost conventional	1141€
part C _t	

INFO Sheet A04

Operation costs solar part per year	
Electricity demand	43.9 kWh/a
Cost per kwh electric energy	0.17 € [4]
Electricity costs	7.5 €/a
Maintenance costs (I ₀ * 2%)	100.5 €/a
Yearly operation and maintenance cost solar part \ensuremath{C}_t	108 €/a
Fractional energy savings with credit for 120I-store,	60.4 %
UA=1.75 W/K	
Saved final energy (year t) E _t	2594 kWh
Lifetime of system	25 year
Corporate tax rate TR	0 %
Asset depreciation (year t) dept	0€
Subsidies and incentives (year t) S_t (considered in I_0)	0€
Residual value RV	0€
Discount rate r	0 %
VAT rate	20 %
LCoHs solar part without VAT	0.119 €/kWh _{th}
LCoHc conventional part without VAT	0.105 €/kWh _{th}
LCoHo complete system without VAT	0.107 €/kWh _{th}

Calculation of levelized cost LCOH [5,6]:

$$LCoH = \frac{I_0 + \sum_{t=0}^{T} \frac{C_t (1 - TR) - DEP_t \cdot TR - S_t - RV}{(1 + r)^t}}{\sum_{t=1}^{T} \frac{E_t}{(1 + r)^t}}$$
(1)

Where:

LCoH: Levelized cost of heat in ϵ /kWh S_t : I_0 : Initial investment in ϵ RV C_t : Operation and maintenance costs (year t) in ϵ E_t TR: Corporate tax rate in %r: DEP_t : Asset depreciation (year t) in ϵ T:

 S_t : Subsidies and incentives (year t) in € RV: Residual value in € E_t : Saved final energy (year t)/Fuel demand in kWh r: Discount rate in % T: Period of analysis in years

Annex: Comparison to Figures Published in Solar Heat Worldwide

To compare the above presented LCOH based on the saved final energy with the LoCH_{SHWW} presented in Solar Heat World Wide based on the collector yield (I_0 without considering the conventional part, C_t : 0.5% of I_0 , E_t solar collector yield, r: 3%, T: 25 years) the following table is presented:

Collector yield (year t) E _t	2409 kWh
LCoH _{SHWW} solar part without VAT	0.149 €/kWh

References

[1] AEE INTEC.

[2] VOLLKOSTENVERGLEICH für neue Heizsysteme in Österreich - ÖNORM M7140, 21.10.2016 (<u>https://www.wko.at/Content.Node/branchen/oe/Mineraloelindustrie/Vollkostenvergleich-Heizungen-nach-OENORM.pdf</u>).

[3] Mauthner F., Weiss, W., Spörk-Dür, M. (2014): "Solar Heat Worldwide - Markets and Contribution to the Energy Supply 2014 - 2016 EDITION".

[4] Oesterreichs Energie - Strompreis (<u>http://oesterreichsenergie.at/daten-fakten/statistik/Strompreis.html</u>).

[5] Louvet, Y., Fischer, S. et. al. (2017): *"IEA SHC Task 54 Info Sheet A1: Guideline for levelized cost of heat (LCOH) calculations for solar thermal applications"*. URL: <u>http://task54.iea-shc.org/.</u>

[6] Louvet, Y., Fischer, S. et.al. (2017): *"Entwicklung einer Richtlinie für die Wirtschaftlichkeitsberechnung solarthermischer Anlagen: die LCoH Methode."* Symposium Thermische Solarenergie, Bad Staffelstein.

¹ To avoid confusion with the results of other works ([1], [8], [9]) also using the notion of LCoH for solar thermal systems, new acronyms were introduced in this Info Sheet. As previous studies have considered different assumptions for the definition of the terms of the LCoH equation, it does not make sense to compare the values they obtained with the LCoHs, LCoHc and LCoHo values defined here. A detailed explanation of the differences between the approaches chosen in the framework of IEA-SHC Task 54 and in the Solar Heat Worldwide report [9] can be found in Info Sheet A13 [10].